A NEW SYNTHESIS OF PHENYIACETIC ACID DERIVATIVES USING METHYL METHYLTHIOMETHYL SULFOXIDE

Katsuyuki Ogura and Gen-ichi Tsuchihashi Sagami Chemical Research Center Ohnuma, Sagamihara, Kanagawa 229 Japan

(Received in Japan 8 February 1972; received in UK for publication 2 March 1972)

Recently, we have reported a new method for synthesizing labile aldehydes by using methyl methylthiomethyl sulfoxide (1) according to the following scheme.¹⁾

We have further examined the synthetic applicability of this versatile reagent,²⁾ and the present communication describes that the sulfoxide l undergoes the Knoevenagel-type condensation with benzaldehyde and substituted benzaldehydes to afford 1-methylsulfinyl-1-methylthio-2-arylethylenes (3), of which the decomposition with an acid in ethanol gives ethyl arylacetates (4, R=Et) in high yields.

To a solution containing 2.57 g of methyl methylthiomethyl sulfoxide (1) and 3 ml of benzaldehyde in 5 ml of tetrahydrofuran, 2 ml of Triton-B solution (40%) in methanol was added, and then the resultant mixture was refluxed for 4 hr. Separation by column-chromatography on silica gel gave 3.99 g of a colorless oil, b_{PO} , 08 mmHg 149-150°, which was characterized as 1-methylsulfinyl-1-

methylthio-2-phenylethylene (\mathfrak{Z} , Ar=Ph) on the basis of the following evidence. Molecular formula, $C_{10}H_{12}OS_2$, for this oil was confirmed by its mass spectrum (parent peak, m/e 212 and base peak, 149) and elemental analysis.⁶⁾ The NMR and IR spectra indicated that it consists of only one stereoisomer and that it has a phenyl group (NMR in CCl₄: δ 7.32m (3H) and 7.85m (2H); IR: 756 and 692 cm⁻¹), an olefinic proton (δ 7.51s (1H)), a methylsulfinyl group (δ 2.62s (3H); 1062 cm⁻¹), and a methylthio group (δ 2.26s (3H)). Reduction of this oil with lithium aluminum hydride afforded phenylacetaldehyde dimethyl mercaptal. The stereoisomer (\mathfrak{Z}) was obtained by irradiation of \mathfrak{Z} (Ar=Ph) in methanol with a low-pressure mercury arc lamp (Vycor filter).

The stereochemical structures of $\underline{2}$ (Ar=Ph) and $\underline{5}$ were assigned by the comparison of the pseudo-contact effects of the shift reagent, tris(dipivaloylmethanato)europium (Eu(dpm)₃), which formed complexes at oxygen atom of a sulfoxide,⁷⁾ on the chemical shifts of their olefinic protons. The singlet at δ 7.51 of $\underline{2}$ (Ar=Ph) was shifted downfield to δ 16.49 by adding 0.51 equiv. of Eu(dpm)₃, while the olefinic proton (δ 7.02 in CCl₄) of $\underline{5}$ appeared at δ 9.71 in CCl₄-Eu(dpm)₃ (0.51 equiv.). These facts indicated that the olefinic proton and the sulfoxide group of $\underline{2}$ (Ar=Ph) are much closer in a space than those of $\underline{5}$. Thus, the stereochemical structure of $\underline{2}$ (Ar=Ph) was established as shown in eq. 2.

The acid-catalyzed degradation of this condensation product took place easily. A solution containing 300 mg of $\underline{3}$ (Ar=Ph) in 10 ml of ethanol was bubbled with hydrogen chloride gas under ice-cooling and then was allowed to stand at room temperature. After evaporation under reduced pressure, the residue was column-chromatographed on silica gel to give 179 mg (78%) of ethyl phenylacetate. When a solution of $\underline{3}$ (Ar=Ph) in 1,2-dimethoxyethane was treated with conc. hydrochloric acid at room temperature, phenylacetic acid was obtained in No. 15

a 63% yield.

In a similar manner, various kinds of substituted benzaldehydes condensed with methyl methylthiomethyl sulfoxide (1) to give 1-methylsulfinyl-1-methylthio-2-arylethylene (3), and the hydrolysis of 3 afforded the corresponding phenylacetic acid derivatives (4). The results are summarized in Table 1.

Table 1.	Yields (%) of \mathfrak{Z} and $\mathfrak{4}$	
Ar	3 ^a	4 (R=Et)
\bigcirc	91	78
MeO-	99	94
C1-	73 ^b	92
Meo D	87 ^b	40
20	81	91

^a based on the reacted 1. ^b at 80^o in dioxane.

This route to phenylacetic acid derivatives is particularly suited for the preparation of such acids as homopiperonylic acid and homoveratric acid which are key-intermediates for the synthesis of isoquinoline alkaloids.⁸⁾ The usual way of making these acids involves the following scheme; starting from piperonal and veratraldehyde and passing through the corresponding benzyl alcohols and benzyl cyanides, the latter compounds are hydrolyzed to afford the aimed acids.⁹⁾ The present reaction provides a simpler and more efficient way to approach these acids and their derivatives.

The easy conversion of 3 to 4 raises an interesting question as to the mechanism of the reaction. The acid-catalyzed ethanolysis of 1-phenylsulfinyl-1-phenylthio-2-(p-chlorophenyl)ethylene (6), which was obtained from the condensation of phenyl phenylthiomethyl sulfoxide with p-chlorobenzaldehyde in the presence of Triton B, afforded ethyl p-chlorophenylacetate and diphenyl disulfide

in yields of 90% and 89%, respectively. The formation of the latter compound in this reaction suggests a mechanism analogous to that of the acid-catalyzed hydrolysis of mercaptal S-oxides 2 to the corresponding carbonyl compounds.^{1,10}) Presumably, the present reaction involves an intermediacy of arylketene which, in turn, changes to phenylacetic acid derivatives. Studies on the detailed mechanism of this intringuing transformation is being undertaken.

REFERENCES

- (1) K. Ogura and G. Tsuchihashi, <u>Tetrahedron Lett.</u>, 3151 (1971).
- (2) Although 1 can be obtained by the substitution reaction of chloromethyl methyl sulfoxide with methyl mercaptide anion, $^{3,4)}$ the oxidation of formaldehyde dimethyl mercaptal appeared to be more convenient way of making 1.⁵⁾
- (3) G. Tsuchihashi and K. Ogura, Bull. Chem. Soc. Japan, 44, 1726 (1971).
- (4) K. Ogura and G. Tsuchihashi, Chem. Commun., 1689 (1970).
- (5) K. Ogura and G. Tsuchihashi, submitted to Bull. Chem. Soc. Japan.
- (6) Satisfactory elemental analyses have been obtained for all new compounds reported herein.
- (7) R. R. Fraser and Y. Y. Wigfield, <u>Chem. Commun</u>., 1471 (1970).
- (8) For example, E. Späth and N. Lang, Monatsh. Chem., <u>42</u>, 273 (1921).
- (9) E. R. Shepard, H. D. Porter, J. F. Noth, and C. K. Simmans, <u>J. Org. Chem.</u>, 17, 568 (1952).
- (10) H. Nieuwembuyse and R. Louw, Tetrahedron Lett., 4141 (1971).